A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics formalization of a quantity or object which depends on randomness events.
Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice; it may also represent uncertainty, such as measurement error. However, the interpretation of probability is philosophically complicated, and even in specific cases is not always straightforward. The purely mathematical analysis of random variables is independent of such interpretational difficulties, and can be based upon a rigorous Axiom setup.
In the formal mathematical language of measure theory, a random variable is defined as a measurable function from a probability measure space (called the sample space) to a measurable space. This allows consideration of the pushforward measure, which is called the distribution of the random variable; the distribution is thus a probability measure on the set of all possible values of the random variable. It is possible for two random variables to have identical distributions but to differ in significant ways; for instance, they may be independent.
It is common to consider the special cases of discrete random variables and absolutely continuous random variables, corresponding to whether a random variable is valued in a countable subset or in an interval of . There are other important possibilities, especially in the theory of stochastic processes, wherein it is natural to consider or . Sometimes a random variable is taken to be automatically valued in the real numbers, with more general random quantities instead being called .
According to George Mackey, Pafnuty Chebyshev was the first person "to think systematically in terms of random variables".
The probability that takes on a value in a measurable set is written as
When the image (or range) of is finite or countable set infinite, the random variable is called a discrete random variable and its distribution is a discrete probability distribution, i.e. can be described by a probability mass function that assigns a probability to each value in the image of . If the image is uncountably infinite (usually an interval) then is called a continuous random variable. In the special case that it is absolutely continuous, its distribution can be described by a probability density function, which assigns probabilities to intervals; in particular, each individual point must necessarily have probability zero for an absolutely continuous random variable. Not all continuous random variables are absolutely continuous.
Any random variable can be described by its cumulative distribution function, which describes the probability that the random variable will be less than or equal to a certain value.
However, the definition above is valid for any measurable space of values. Thus one can consider random elements of other sets , such as random Boolean values, categorical values, complex numbers, random vector, random matrix, random sequence, trees, sets, , , and random function. One may then specifically refer to a random variable of data type , or an -valued random variable.
This more general concept of a random element is particularly useful in disciplines such as graph theory, machine learning, natural language processing, and other fields in discrete mathematics and computer science, where one is often interested in modeling the random variation of non-numerical . In some cases, it is nonetheless convenient to represent each element of , using one or more real numbers. In this case, a random element may optionally be represented as a random vector (all defined on the same underlying probability space , which allows the different random variables to covary). For example:
Recording all these probabilities of outputs of a random variable yields the probability distribution of . The probability distribution "forgets" about the particular probability space used to define and only records the probabilities of various output values of . Such a probability distribution, if is real-valued, can always be captured by its cumulative distribution function
and sometimes also using a probability density function, . In measure theory terms, we use the random variable to "push-forward" the measure on to a measure on . The measure is called the "(probability) distribution of " or the "law of ".
Another random variable may be the person's number of children; this is a discrete random variable with non-negative integer values. It allows the computation of probabilities for individual integer values – the probability mass function (PMF) – or for sets of values, including infinite sets. For example, the event of interest may be "an even number of children". For both finite and infinite event sets, their probabilities can be found by adding up the PMFs of the elements; that is, the probability of an even number of children is the infinite sum .
In examples such as these, the sample space is often suppressed, since it is mathematically hard to describe, and the possible values of the random variables are then treated as a sample space. But when two random variables are measured on the same sample space of outcomes, such as the height and number of children being computed on the same random persons, it is easier to track their relationship if it is acknowledged that both height and number of children come from the same random person, for example so that questions of whether such random variables are correlated or not can be posed.
If are countable sets of real numbers, and , then is a discrete distribution function. Here for , for . Taking for instance an enumeration of all rational numbers as , one gets a discrete function that is not necessarily a step function (piecewise constant).
If the coin is a fair coin, Y has a probability mass function given by:
An example of a continuous random variable would be one based on a spinner that can choose a horizontal direction. Then the values taken by the random variable are directions. We could represent these directions by North, West, East, South, Southeast, etc. However, it is commonly more convenient to map the sample space to a random variable which takes values which are real numbers. This can be done, for example, by mapping a direction to a bearing in degrees clockwise from North. The random variable then takes values which are real numbers from the interval 0, is . Instead of speaking of a probability mass function, we say that the probability density of X is 1/360. The probability of a subset of [0, 360) can be calculated by multiplying the measure of the set by 1/360. In general, the probability of a set for a given continuous random variable can be calculated by integrating the density over the given set.
More formally, given any interval , a random variable is called a "continuous uniform random variable" (CURV) if the probability that it takes a value in a subinterval depends only on the length of the subinterval. This implies that the probability of falling in any subinterval is proportional to the Lebesgue measure of the subinterval, that is, if , one has
where the last equality results from the unitarity axiom of probability. The probability density function of a CURV is given by the indicator function of its interval of support normalized by the interval's length: Of particular interest is the uniform distribution on the unit interval . Samples of any desired probability distribution can be generated by calculating the quantile function of on a randomly-generated number distributed uniformly on the unit interval. This exploits properties of cumulative distribution functions, which are a unifying framework for all random variables.
An example of a random variable of mixed type would be based on an experiment where a coin is flipped and the spinner is spun only if the result of the coin toss is heads. If the result is tails, X = −1; otherwise X = the value of the spinner as in the preceding example. There is a probability of that this random variable will have the value −1. Other ranges of values would have half the probabilities of the last example.
Most generally, every probability distribution on the real line is a mixture of discrete part, singular part, and an absolutely continuous part; see . The discrete part is concentrated on a countable set, but this set may be dense (like the set of all rational numbers).
The measure-theoretic definition is as follows.
Let be a probability space and a measurable space. Then an -valued random variable is a measurable function , which means that, for every subset , its preimage is -measurable; , where . This definition enables us to measure any subset in the target space by looking at its preimage, which by assumption is measurable.
In more intuitive terms, a member of is a possible outcome, a member of is a measurable subset of possible outcomes, the function gives the probability of each such measurable subset, represents the set of values that the random variable can take (such as the set of real numbers), and a member of is a "well-behaved" (measurable) subset of (those for which the probability may be determined). The random variable is then a function from any outcome to a quantity, such that the outcomes leading to any useful subset of quantities for the random variable have a well-defined probability.
When is a topological space, then the most common choice for the σ-algebra is the Borel σ-algebra , which is the σ-algebra generated by the collection of all open sets in . In such case the -valued random variable is called an -valued random variable. Moreover, when the space is the real line , then such a real-valued random variable is called simply a random variable.
This definition is a special case of the above because the set generates the Borel σ-algebra on the set of real numbers, and it suffices to check measurability on any generating set. Here we can prove measurability on this generating set by using the fact that .
Mathematically, this is known as the (generalised) problem of moments: for a given class of random variables , find a collection of functions such that the expectation values fully characterise the distribution of the random variable .
Moments can only be defined for real-valued functions of random variables (or complex-valued, etc.). If the random variable is itself real-valued, then moments of the variable itself can be taken, which are equivalent to moments of the identity function of the random variable. However, even for non-real-valued random variables, moments can be taken of real-valued functions of those variables. For example, for a categorical random variable X that can take on the nominal data values "red", "blue" or "green", the real-valued function can be constructed; this uses the Iverson bracket, and has the value 1 if has the value "green", 0 otherwise. Then, the expected value and other moments of this function can be determined.
If function is invertible (i.e., exists, where is 's inverse function) and is either increasing or decreasing, then the previous relation can be extended to obtain
& \text{if } h = g^{-1} \text{ increasing} ,\\\\ \operatorname{P}(X \ge h(y)) = 1 - F_X(h(y)),
& \text{if } h = g^{-1} \text{ decreasing} .\end{cases}
With the same hypotheses of invertibility of , assuming also differentiability, the relation between the probability density functions can be found by differentiating both sides of the above expression with respect to , in order to obtain
If there is no invertibility of but each admits at most a countable number of roots (i.e., a finite, or countably infinite, number of such that ) then the previous relation between the probability density functions can be generalized with
where , according to the inverse function theorem. The formulas for densities do not demand to be increasing.
In the measure-theoretic, axiomatic approach to probability, if a random variable on and a Borel measurable function , then is also a random variable on , since the composition of measurable functions is also measurable. (However, this is not necessarily true if is Lebesgue measurable.) The same procedure that allowed one to go from a probability space to can be used to obtain the distribution of .
If , then , so
If , then
= \operatorname{P}(-\sqrt{y} \le X \le \sqrt{y}),
so
where is a fixed parameter. Consider the random variable Then,
The last expression can be calculated in terms of the cumulative distribution of so
which is the cumulative distribution function (CDF) of an exponential distribution.
Consider the random variable We can find the density using the above formula for a change of variables:
In this case the change is not monotonic, because every value of has two corresponding values of (one positive and negative). However, because of symmetry, both halves will transform identically, i.e.,
The inverse transformation is
Then,
This is a chi-squared distribution with one degree of freedom.
Consider the random variable We can find the density using the above formula for a change of variables:
In this case the change is not monotonic, because every value of has two corresponding values of (one positive and negative). Differently from the previous example, in this case however, there is no symmetry and we have to compute the two distinct terms:
The inverse transformation is
Then,
This is a noncentral chi-squared distribution with one degree of freedom.
In increasing order of strength, the precise definition of these notions of equivalence is given below.
To be equal in distribution, random variables need not be defined on the same probability space. Two random variables having equal moment generating functions have the same distribution. This provides, for example, a useful method of checking equality of certain functions of independent, identically distributed (IID) random variables. However, the moment generating function exists only for distributions that have a defined Laplace transform.
For all practical purposes in probability theory, this notion of equivalence is as strong as actual equality. It is associated to the following distance:
where "ess sup" represents the essential supremum in the sense of measure theory.
This notion is typically the least useful in probability theory because in practice and in theory, the underlying measure space of the experiment is rarely explicitly characterized or even characterizable.
For example, consider the real random variables A, B, C, and D all defined on the same probability space. Suppose that A and B are equal almost surely (), but A and C are only equal in distribution (). Then , but in general (not even in distribution). Similarly, we have that the expectation values , but in general . Therefore, two random variables that are equal in distribution (but not equal almost surely) can have different covariance with a third random variable.
There are various senses in which a sequence of random variables can converge to a random variable . These are explained in the article on convergence of random variables.
|
|